Isolation and X-ray structural characterization of tetraisopropylpyrene cation radical[†]

Moloy Banerjee, Vijay S. Vyas, Sergey V. Lindeman and Rajendra Rathore*

Received (in Austin, TX, USA) 7th January 2008, Accepted 5th February 2008 First published as an Advance Article on the web 28th February 2008 DOI: 10.1039/b800168e

A practical synthesis of 1,3,6,8-tetraisopropylpyrene and the isolation and X-ray structural characterization of its monomeric cation radical salt are described.

Pyrene has been extensively utilized as a fluorescent probe for studying the conformational changes in proteins in solution owing to its long excited-state lifetime and characteristic excimer formation due to its self association.¹ The ability of pyrene to self associate into ordered structures has also been exploited in its usage as liquid crystalline materials. $²$ In stark</sup> contrast, it is this ability of $\pi-\pi$ stacking and excimer formation in solution and solid state that has limited the usage of pyrene as an emissive material in organic light-emitting diodes (OLED's) and related applications.³

Although, pyrene undergoes selective and quantitative bromination at the 1,3,6,8-positions to produce the corresponding tetrabromopyrene,⁴ attempted electrophilic substitutions to functionalize the pyrene core at the 1,3,6,8 positions with isopropyl groups, and thereby sterically congesting the flat fluorophore,⁵ led to complex mixtures of polyalkylated pyrenes from which the separation of the desired isomer was rather tedious.⁶

Our continuing interest in the design and syntheses of stable organic cation radicals or hole carriers, which are of fundamental importance to organic materials science, 7 led us to obtain an efficient and scalable route for the preparation of 1,3,6,8-tetraisopropylpyrene (3) and demonstrate the efficacy of sterically hindered tetraisopropylpyrene for the isolation and X-ray crystallographic characterization of its monomeric cation-radical salt. The details of these findings are described herein.

After several failed attempts, in our hands, to synthesize 3 by Friedel–Crafts alkylation,^{5,6} we resorted to a different approach as summarized in Scheme 1. Thus, a 4-fold Suzuki coupling between the readily-available 1,3,6,8-tetrabromopyrene,4 and isopropenylboronic acid,⁸ afforded cleanly the 1,3,6,8-tetraisopropenylpyrene (2) in $> 92\%$ isolated yield. A catalytic hydrogenation of 2 over 10% Pd-C in a mixture of ethyl acetate–ethanol furnished 3 in quantitative yield. It was

Scheme 1 Synthesis of 1,3,6,8-tetraisopropylpyrene (3).

noted that under these hydrogenation conditions, the reduction of the pyrene core was not observed.

The absorption spectrum of 3 in dichloromethane was characteristically similar to that of the parent pyrene with a modest bathochromic shift (\sim 30 nm) owing to the alkyl substitutions. Furthermore, unlike the parent pyrene⁹ which showed a broad featureless excimer emission centered at \sim 472 nm in the concentration range studied (0.05–0.1 M), the tetraisopropylpyrene 3 showed only the monomeric emission (Fig. 1). As such, the observation of monomeric emission for 3 suggests that the bulky isopropyl groups exert sufficient steric inhibition to prevent a face to face approach of \sim 3.5 Å necessary for an efficient π -stacking¹⁰ and consequent excimer formation (Fig. 1, right).

Fig. 1 Left: selected excitation (black lines) and emission (red lines) of 3 as dichloromethane solution ranging from a concentration of 1.66 \times 10⁻⁶ M to 1.0 \times 10⁻⁵ M. Right: calculated structures of dimeric pyrene and 3 using DFT at B3LYP-631G* level.

Department of Chemistry, Marquette University, PO Box 1881, Milwaukee, Wisconsin 53201, USA. E-mail:

rajendra.rathore@marquette.edu; Fax: +1-414-288-7066;

Tel: +1-414-288-2076

 \dagger Electronic supplementary information (ESI) available: Synthetic details of 3 and procedure for the isolation of its cation radical. Crystallographic data for CCDC 674750 and 674751. See DOI: 10.1039/b800168e

Fig. 2 Left: cyclic voltammograms of 2×10^{-3} M 3 in CH₂Cl₂ containing 0.2 M $n-Bu_4NPF_6$ at scan rates between 100 and 500 mV s⁻¹. Right: spectral changes upon the reduction of 1.33×10^{-5} M MA^* by incremental addition of 3 in dichloromethane at 22 °C. Inset: a plot of increase in absorbance of $3^{\bullet +}$ (monitored at 494 nm) against the equivalent of added 3.

Next with sufficient quantities of the tetraisopropylpyrene at our disposal, it was subjected to electrochemical oxidation at a platinum electrode as a 2×10^{-3} M solution in dichloromethane containing 0.2 M $n-Bu_4NPF_6$ as the supporting electrolyte. The cyclic voltammograms (Fig. 2, left) consistently met the reversibility criteria at various scan rates of 100–500 mV s^{-1} , as they all showed cathodic/anodic peak current ratios of $i_a/i_c = 1.0$ (theoretical) as well as the differences between anodic and cathodic peak potentials of $E_{\text{pa}} - E_{\text{pc}} = 70$ mV at 22 °C. The reversible oxidation potential of 3 (E_{ox} = 0.98 V vs. SCE) was calibrated with added ferrocene as an internal standard (E_{ox} = 0.45 V vs. SCE). It is important to note that under similar conditions as above, the parent pyrene undergoes an irreversible electrochemical oxidation at $E_{ox} = 1.36$ V vs. SCE.

The electrochemical reversibility and relatively low oxidation potential of 3, prompted us to generate its cation radical by chemical oxidation using a stable aromatic cation radical salt $(MA^{\bullet +} SbCl_6^-; E_{red} = 1.11 \text{ V } vs. SCE)$ as a one-electron oxidant.11 Thus Fig. 2 (right) shows the spectral changes attendant upon an incremental addition of sub-stoichiometric amounts of tetraisopropylpyrene to a 1.3×10^{-5} M MA^{*+} $[\lambda_{\text{max}} (\log \varepsilon) = 518 \text{ nm} (3.86)]$ in dichloromethane at 22 °C. Furthermore a plot of formation of the tetraisopropyl pyrene cation radical (i.e. increase in the absorbance at 494 nm) against the increments of added neutral 3 (see inset of Fig. 2, right), established that MA^* was completely consumed after the addition of 1 equiv. of 3; and the resulting highly structured absorption spectrum of 3^{\bullet} [λ_{max} = 330, 345, 362, 494 $(\log \epsilon = 4.83)$, 451 (sh), 590, and 695 nm] remained unchanged upon further addition of neutral 3 (*i.e.* eqn (1)).

$$
3 + \left(\begin{matrix} 0 \\ 0 + \frac{1}{2} \end{matrix}\right) \longrightarrow 3^*SbCl_6 + MA \quad (1)
$$

The green-colored solution of the $3^{\bullet +}$ SbCl₆⁻ is highly persistent and did not show any decomposition at room temperature during the course of 12 hours. Moreover, a reduction of a dichloromethane solution of $3^{\bullet +}$ with zinc dust

Fig. 3 The ORTEP diagram of $3^{\bullet +}$ SbCl₆⁻ cation radical salt (right), with the packing diagram (left) showing that the toluene molecules are embedded between the herringbone stacks of $3^{\bullet +}$. (The thermal ellipsoids are drawn with 55% probability.)

regenerated neutral 3 quantitatively, which further lends support to the high stability of the $3^{\bullet +}$. As in the neutral tetraisopropylpyrene which showed no signs of aggregation $(i.e.$ Fig. 1), the formation of the dimeric cation radical resulting from the cofacial stacking of $3^{\bullet +}$ with neutral 3, was not observed as judged by the singular absence of the charge-resonance transition in the NIR region in the presence of a large excess of 3. Note that the parent pyrene cation radical readily forms a dimeric cation radical with characteristic absorption bands at 395 and 520 nm together with a broad charge-resonance transition centered at \sim 1600 nm.¹²

The high stability of the tetraisopropylpyrene cation radical in solution prompted us to isolate its crystalline salt by chemical oxidation using nitrosonium hexachloroantimonate as a 1-e⁻ oxidant according to the stoichiometry in eqn (2).

$$
3 + NO^{+}SbCl_{6}^{-} \overset{DCM}{\rightarrow} 3^{\bullet+}SbCl_{6}^{-} + NO \uparrow
$$
 (2)

Thus, a solution of 3 in anhydrous dichloromethane was added to crystalline NO^+ SbCl₆⁻ under an argon atmosphere at ~ 0 °C. The gaseous nitric oxide produced was entrained by bubbling argon through the solution to yield a green-colored solution, which upon spectrophotometric analysis indicated the formation of $3^{\bullet +}$ SbCl₆⁻ (see Fig. 2). An excellent crop of dark-colored crystals, suitable for X-ray crystallographic studies, were obtained by a slow diffusion of toluene into the above solution of $3^{\bullet +}$ during a period of 2 days at -20 °C.

The crystal structure of $3^{\bullet +}$ SbCl₆⁻ revealed that cationic tetraisopropylpyrene moieties pack in a herringbone arrangement (see Fig. 3, left) with a pair of embedded toluene molecules. \ddagger One of the two crystallographically independent toluene molecules forms an individual 1:1 complex with 3^{\bullet} ⁺ while the other toluene molecule and the counteranion $(SbCl₆⁻)$ fill the space between the herringbone stacks of $3^{\bullet +}$ (see Fig. 3, left). δ

A closer look at the bond length changes in the cation radical 3^{\bullet} ⁺, together with a comparison with its neutral form, the structure of which was established by X-ray crystallography, points to the following important observations: (i) one electron oxidation causes no perceptible change in the bonds

Fig. 4 Left: lettering scheme for the pyrene skeleton. Right: showing the localization of the HOMO of 3, obtained by DFT calculations at the B3LYP-631G** level, on bonds labelled B and D.

Table 1 Experimental and theoretical bond lengths of the neutral and cation radical of 3 presented in picometres (pm)

Bond type	B3LYP/6-31G**			X-Ray data		
	3	3^{\bullet}		3	3^{\bullet}	
\mathbf{A}	139.6	139.5	-0.1	138.9(3)	138.6(2)	-0.3
B	141.7	144.0	$+2.3$	141.1(3)	143.5(3)	$+2.4$
$\mathbf C$	143.5	142.4	-1.1	143.4(3)	141.2(3)	-2.2
D	135.9	138.0	$+2.1$	134.7(3)	137.5(3)	$+2.8$
E	143.4	143.0	-0.4	142.7(3)	142.4(3)	-0.3
F	144.0	143.1	-0.9	144.5(3)	142.7(4)	-1.8

marked A (d_A 139 pm) and E (d_B 142 pm). (ii) The increased aromatization of the two internal rings of the pyrene molecule on oxidation occurs by a simultaneous lengthening of the short external bonds B and D by 2.2 and 2.9 pm, respectively, and shortening of the adjacent long bonds C by 2.1 pm. Interestingly, the bonds which undergo most dramatic lengthening in 3^{\bullet} (*i.e.* bonds **B** and **D**) are the bonds on which the HOMO resides, i.e. Fig. 4 (right). (iii) The central bond F undergoes a shortening of 1.8 pm in order to accommodate the changes in the bond lengths of various annulenic bonds (*i.e.* \bf{B} , C, and D).

The experimental observations of the bond length changes upon 1-electron oxidation of 3 were found to be in reasonable agreement with the calculated values using DFT calculations at the B3LYP-631 G^{**} level (see Table 1).¹³

In summary, a simple and practical synthesis of 1,3,6,8 tetraisopropylpyrene (3) has been accomplished from readily available precursors. The emission and absorption spectroscopy of the neutral and cationic 3 clearly show that the π stacking is inhibited owing to the presence of bulky isopropyl groups. The isolation and X-ray crystal structure determination of $3^{\bullet +}$ SbCl₆⁻ as well as DFT calculations provide unequivocal evidence that introduction of a cationic charge (or polaron) in 3 largely affects the bonds on which the HOMO resides. Studies are underway for a more comprehensive investigation of the steric modulation of the π -stacking in various polyaromatic hydrocarbons.

Notes and references

 \ddagger Crystal structure data for 3. A suitable crystal (0.20 \times 0.18 \times 0.06 mm^3) of 3 was obtained from a mixture of dichloromethane–acetonitrile solution at 22 °C. MW = 370.55, triclinic, space group $P\overline{1}$, $a =$ 11.3272 (7), $b = 12.6764(7)$, $c = 16.9660(12)$ \mathring{A} , $\alpha = 94.595(4)^\circ$, $\beta =$ 92.311(4)°, $\gamma = 115.064(3)$ °, $D_c = 1.123$ Mg m⁻³, $V = 2192.2(2)$ Å³, Z $= 4$. The total number of reflections measured were 25 845, of which 7547 reflections were symmetrically non-equivalent. Also note that

unit cell contained one molecule in a general position and two half molecules lying about their inversion centres. Final residuals were R1 = 0.0644 and wR2 = 0.1740 for 7547 reflections with $I > 2\sigma(I)$. Crystal structure data for $[3^{\bullet +}$ SbCl₆⁻, 2C₇H₈]. A suitable crystal (0.51) \times 0.23 \times 0.14 mm³) of $3^{\bullet +}$ SbCl₆⁻ was obtained from a mixture of dichloromethane–toluene solution at -30 °C. MW = 889.27, orthorhombic, space group *Pnma*, $a = 13.8054(3)$, $b = 12.5572(3)$, $c =$ 23.6942(6) $A_{3/2} = 90^{\circ}, \beta = 90^{\circ}, \gamma = 90^{\circ}, D_{c} = 1.438$ Mg m⁻³ $V =$ 4107.56(17) \mathring{A}^3 , Z = 4. The total number of reflections measured were 34 504, of which 3746 reflections were symmetrically non-equivalent. Final residuals were $R1 = 0.0268$ and $wR2 = 0.659$ for 3746 reflections with $I > 2\sigma(I)$. Note that all four components have crystallographically imposed mirror symmetry. CCDC numbers of complexes 3 and $[3^{\bullet +}$ SbCl_6^- , $2\text{C}_7\text{H}_8]$ are 674750 and 674751. § Note that a cofacial arrangement between the toluene and $3^{\bullet +}$ at an

inter-planar separation of 3.5 Å may stabilize the cationic tetraisopropylpyrene via an electron-donor acceptor interaction. Also note that both the toluene molecules are rotationally disordered (within their respective molecular planes) with the occupations of the minor components being 23 and 37%.

- 1 (a) S. A. V. Arman and A. W. Czarnik, J. Am. Chem. Soc., 1990, 112, 5376; (b) M. Sassaroli, M. Ruonala, J. Virtanen, M. Vauhkonen and P. Somerharju, Biochemistry, 1995, 34, 8843; (c) A. Okamoto, K. Kanatani and I. Saito, J. Am. Chem. Soc., 2004, 126, 4820; (d) K. Fujimoto, H. Shimizu and M. Inouye, J. Org. Chem., 2004, 69, 3271; (e) I. V. Astakhova, A. D. Malakhov, I. A. Stepanova, A. V. Ustinov, S. L. Bondarev, A. S. Paramonov and V. A. Korshun, Bioconjugate Chem., 2007, 18, 1972.
- 2 (a) S. A. Benning, T. Hassheider, S. Keuker-Baumann, H. Bock, F. D. Sala, T. Frauenheim and H.-S. Kitzerow, Liq. Cryst., 2001, 28, 1105; (b) T. Hassheider, S. A. Benning, H.-S. Kitzerow, M.-F. Achard and H. Bock, Angew. Chem., Int. Ed., 2001, 40, 2060; (c) V. de Halleux, J.-P. Calbert, P. Brocorens, J. Cornil, J.-P. Declercq, J.-L. Bredas and Y. Geerts, Adv. Funct. Mater., 2004, 14, 649; (d) A. Hayer, V. D. Halleux, A. Koehler, A. El-Garoughy, E. W. Meijer, J. Barbera, J. Tant, J. Levin, M. Lehmann, J. Gierschner, J. Cornil and Y. H. Geerts, J. Phys. Chem. B, 2006, 110, 7653.
- 3 (a) T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe and C. Adachi, J. Appl. Phys., 2005, 98, 074506; (b) M. Muccini, Nat. Mater., 2006, 5, 605; (c) C.-H. Yang, T.-F. Guo and I.-W. Sun, J. Lumin., 2007, 124, 93.
- 4 G. Venkataramana and S. Sankararaman, Eur. J. Org. Chem., 2005, 4162.
- 5 M. Minabe, S. Takeshige, Y. Soeda, T. Kimura and M. Tsubota, Bull. Chem. Soc. Jpn., 1994, 67, 172.
- 6 (a) I. L. Zvarich, A. P. Zaraiskii and O. I. Kachurin, Ukr. Khim. Zh. (Russ. Ed.), 1989, 55, 330; (b) A. Berg, J. Lam and P. E. Hansen, Acta Chem. Scand., Ser. B, 1986, B40, 665; (c) K. K. Laali, P. E. Hansen, E. Gelerinter and J. J. Houser, J. Org. Chem., 1993, 58, 4088 and references therein.
- 7 (a) M. Banerjee, S. V. Lindeman and R. Rathore, J. Am. Chem. Soc., 2007, 129, 8070; (b) J. K. Kochi, R. Rathore and P. L. Magueres, J. Org. Chem., 2000, 65, 6826; (c) R. Rathore, S. H. Abdelwahed and I. A. Guzei, J. Am. Chem. Soc., 2004, 126, 13582; (d) P. Debroy, R. Shukla, S. V. Lindeman and R. Rathore, J. Org. Chem., 2007, 72, 1765 and references therein.
- 8 G. A. Molander and M. Ribagorda, J. Am. Chem. Soc., 2003, 125, 11148.
- 9 (a) F. M. Winnik, Chem. Rev., 1993, 93, 587; (b) C. G. Echeverría, J. Am. Chem. Soc., 1994, 116, 6031.
- 10 R. Rathore, S. V. Lindeman and J. K. Kochi, J. Am. Chem. Soc., 1997, 119, 9393 and references therein.
- 11 R. Rathore, C. L. Burns, M. I. Deselnicu, S. E. Denmark and T. Bui, Org. Synth., 2005, 82, 1.
- 12 (a) A. Tsuchida, Y. Tsujii, M. Oboka and M. Yamamoto, J. Phys. Chem., 1991, 95, 5797; (b) Y. Mori, H. Shinoda, T. Nakano and T. Kitagawa, J. Phys. Chem. A, 2002, 106, 11743; (c) E. H. Ellison, J. Phys. Chem. B, 2004, 108, 4607; (d) M. Hara, S. Tojo, K. Kawai and T. Majima, Phys. Chem. Chem. Phys., 2004, 6, 3215.
- 13 Compare: (a) A. Pathak and S. Rastogi, Chem. Phys., 2006, 326, 315; (b) S. F. Nelsen, M. N. Weaver, D. Yamazaki, K. Komatsu, R. Rathore and T. Bally, J. Phys. Chem. A, 2007, 111, 1667.